Jumat, 25 September 2015

Kekurangan Harvard & Von Neumann

   A.  Arsitektur Komputer Model Harvard

Arsitektur Harvard memiliki dua memori yang terpisah satu untuk program (ROM) 
dan satu untuk data (RAM), yang mana arsitektur ini merupkan kebalikkan dari arsitektur 
komputer model von nuemann, jika von neuman mengabungkan ROM dan RAM menjadi 
satu maka arsitektur harvard maka kedua memori tersebut dipisahkan.

Diagram Arsitektur Komputer Model Harvard


Kelebihan Arsitektur Komputer Model Harvard

·         bandwidth program tidak mesti sama dengan bandwidth  data
·         opcode dan operand dapat dijadikan dalam satu word instruksi saja
·         instruksi dapat dilakukan dengan lebih singkat dan cepat
·         memori program dan data yang terpisah,  maka kavling total memori program dan data dapat menjadi lebih banyak.
Kekurangan Arsitektur Komputer Model Harvard
·         arsitektur Harvard tidak memungkinkan untuk menempatkan data pada ROM.
·         arsitektur in tidak memungkinkan untuk mengakses data yang ada di ROM

   B. Von Neumann
Keuntungan Model Arsitektur Von Neuman
·         fleksibilitas pengalamatan program dan data.
·         program selalu ada di ROM dan data selalu ada di RAM.
·          Arsitektur Von Neumann memungkinkan prosesor untuk menjalankan program yang ada didalam memori data (RAM).
Kelemahan Model Arsitektur Von Neumann
·         bus tunggalnya itu sendiri. Sehingga instruksi untuk mengakses program dan data harus dijalankan secara sekuensial dan tidak bisa dilakukan overlapinguntuk menjalankan dua isntruksi yang berurutan.
·         bandwidth program harus sama dengan banwitdh data. Jika memori data adalah 8 bits maka program juga harus 8 bits.
·         prosesor Von Neumann membutuhkan jumlah clock CPI (Clock per Instruction) yang relatif lebih banyak sehingga eksekusi instruksi dapat menjadi relatif lebih lama.



Macam-Macam Register

Register merupakan alat penyimpanan kecil yang mempunyai kecepatan akses cukup tinggi, yang digunakan untuk menyimpan data dan instruksi yang sedang diproses, sementara data dan instruksi lainnya yang menunggu giliran untuk diproses masih disimpan di dalam memori utama. Setiap register dapat menyimpan satu bilangan hingga mencapai jumlah maksimum tertentu tergantung pada ukurannya. Register-register dapat dibaca dan ditulis dengan kecepatan tinggi karena berada pada CPU.

Register (jamak, dalam bahasa Indonesia menjadi register-register atau banyak register) merupakan media penyimpanan internal CPU yang digunakan saat pengolahan data. Registers merupakan media penyimpanan yang bersifat sementara, artinya data hanya akan berada dalam registers saat data tersebut dibutuhkan selama komputer masih hidup, ketika suatu data tidak diperlukan lagi maka ia tidak berhak lagi berada di dalam
registers, dan ketika komputer dimatikan maka semua data yang berada di dalamnya akan hilang. 


Berikut fungsi register :
User Visibel Register :
Register CPU yang dapat digunakan oleh pemrogram, dengan menggunakan set intsruksi memungkinkan satu buah register atau lebih untuk dispesifikasian sebagai operand atau alamat operand.
Register CPU yang dapat digunakan oleh pemrogram, dengan menggunakan set intsruksi memungkinkan satu buah register atau lebih untuk dispesifikasian sebagai operand atau alamat operand.

           a.      General Purpose Register
·          Digunakan untuk mode pengalamatan dan data. 
·         Akumulator ( aritmatika, Shift, Rotate)  
·         Base Register (Rotate,Shift, aritmatika)
·         Counter Register ( Looping) 
·         Data Register (menyimpan alamat I/O device).
           b.      Register Alamat
·          Digunakan untuk mode pengalamatan
·         Segment Register (Code Segment, Data Segment, Stack Segment, Extra Segment)
·         Register Index (Stack Index, Data Index)
·         Stack Pointer
          c.       Register Data
·          Digunakan untuk menampung data
          d.      Register Kode Status Kondisi (Flag)
·         Kode yang menggambarkan hasil operasi sebelumnya
      Control dan Status Register :
Register ini digunakan oleh unit control untuk mengontrol operasi cpu dan oleh program system operasi untuk mengontrol eksekusi program






Control Register

           a.      Program Counter (PC)
·         Berisi alamat instruksi yang akan diambil
           b.      Instruction Register (IR)
·         Berisi alamat instruksi terakhir
           c.       Memory Address Register (MAR)
·         Berisi alamat penyimpanan dalam memori
           d.      Memori Buffer Register (MBR)
·         Berisi data yang dibaca dari memori atau yang diyliskan ke memori



Register prosesor
Register prosesor, dalam arsitektur komputer, adalah sejumlah kecil memorikomputer yang bekerja dengan kecepatan sangat tinggi yang digunakan untuk melakukan eksekusi terhadap program-program komputer dengan menyediakan akses yang cepat terhadap nilai-nilai yang umum digunakan. Umumnya nilai-nilai yang umum digunakan adalah nilai yang sedang dieksekusi dalam waktu tertentu.
Register prosesor berdiri pada tingkat tertinggi dalam hierarki memori: ini berarti bahwa kecepatannya adalah yang paling cepat; kapasitasnya adalah paling kecil; dan harga tiap bitnya adalah paling tinggi. Register juga digunakan sebagai cara yang paling cepat dalam sistem komputer untuk melakukan manipulasi data. Register umumnya diukur dengan satuan bit yang dapat ditampung olehnya, seperti "register 8-bit", "register 16-bit", "register 32-bit", atau "register 64-bit" dan lain-lain.
Istilah register saat ini dapat merujuk kepada kumpulan register yang dapat diindeks secara langsung untuk melakukan input/output terhadap sebuah instruksi yang didefinisikan oleh set instruksi. untuk istilah ini, digunakanlah kata "Register Arsitektur". Sebagai contoh set instruksi Intel x86 mendefinisikan sekumpulan delapan buah register dengan ukuran 32-bit, tapi CPU yang mengimplementasikan set instruksi x86 dapat mengandung lebih dari delapan register 32-bit.


Jenis register
Register terbagi menjadi beberapa kelas:
  • Register data, yang digunakan untuk menyimpan angka-angka dalam bilangan bulat (integer).
  • Register alamat, yang digunakan untuk menyimpan alamat-alamat memori dan juga untuk mengakses memori.
  • Register general purpose, yang dapat digunakan untuk menyimpan angka dan alamat secara sekaligus.
  • Register floating-point, yang digunakan untuk menyimpan angka-angka bilangan titik mengambang (floating-point).
  • Register konstanta (constant register), yang digunakan untuk menyimpan angka-angka tetap yang hanya dapat dibaca (bersifat read-only), semacam phi,nulltruefalse dan lainnya.
  • Register vektor, yang digunakan untuk menyimpan hasil pemrosesan vektor yang dilakukan oleh prosesor SIMD.
  • Register special purpose yang dapat digunakan untuk menyimpan data internal prosesor, seperti halnya instruction pointer, stack pointer, dan status register.
  • Register yang spesifik terhadap model mesin (machine-specific register), dalam beberapa arsitektur tertentu, digunakan untuk menyimpan data atau pengaturan yang berkaitan dengan prosesor itu sendiri. Karena arti dari setiap register langsung dimasukkan ke dalam desain prosesor tertentu saja, mungkin register jenis ini tidak menjadi standar antara generasi prosesor.
Ukuran register
Tabel berikit berisi ukuran register dan padanan prosesornya
Register
Prosesor
4-bit
8-bit
16-bit
32-bit
64-bit

Nuvola apps mycomputer.png 










Sabtu, 19 September 2015

Sistem Memory

SISTEM MEMORI

Sistem Memori ( Memori ) adalah komponen-komponen elektronik yang menyimpan perintah- perintah yang menunggu untuk di eksekusi oleh prosesor,data yang diperlukan oleh insruksi (perintah) tersebut dan hasil-hasil dari data yang diproses ( informasi ). Memori biasanya terdiri atas satu chip atau beberapa papan sirkuit lainnya dalam prosesor. Memori komputer bisa diibaratkan sebagai papan tulis, dimana setiap orang yang masuk kedalam ruangan bisa membaca dan memanfaatkan data yang ada dengan tanpa merubah susunan yang tersaji. Data yang diproses oleh komputer, sebenarnya masih tersimpan didalam memori, dan dalam hal ini komputer hanya membaca data dan kemudian memprosesnya. Satu kali data tersimpan didalam memori komputer, maka data tersebut akan tetap tinggal disitu selamanya. Setiap kali memori penuh, maka data yang ada bisa dihapus sebagian ataupun seluruhnya untuk diganti dengan data yang baru.
1. Karakteristik sistem-sistem memori secara umum:
a. Lokasi
• CPU
Memori ini built-in berada dalam CPU (mikroprosesor) dan diperlukan untuk semua kegiatan CPU. Memori ini disebut register.
• Internal (main)
Memori ini berada di luar chip processor tetapi bersifat internal terhadap sistem komputer dan diperlukan oleh CPU untuk proses eksekusi (operasi) program, hingga dapat diakses secara langsung oleh prosesor (CPU) tanpa modul perantara. Memori internal sering juga disebut sebagai memori primer atau memori utama. Memori internal biasanya menggunakan media RAM
• External (secondary)
Memori ini bersifat eksternal terhadap sistem komputer dan tentu saja berada di luar CPU dan diperlukan untuk menyimpan data atau instruksi secara permanen. Memori ini, tidak diperlukan di dalam proses eksekusi sehingga tidak dapat diakses secara langsung oleh prosesor (CPU). Untuk akses memori eksternal ini oleh CPU harus melalui pengontrol/modul I/O. Memori eksternal sering juga disebut sebagai memori sekunder. Memori ini terdiri atas perangkat storage peripheral seperti : disk, pita magnetik,dll.
a. Kapasitas
• Ukuran word
Kapasitas memori internal maupun eksternal biasanya dinyatakan dalam bentuk byte (1 byte = 8 bit) atau word.
• Banyaknya word
Panjang word umumnya 8, 16, 32 bit.

b. Satuan Transfer
Satuan transfer sama dengan jumlah saluran data yang masuk ke dan keluar dari modul memori. Konsep satuan transfer adalah :
• Word, merupakan satuan “alami” organisasi memori. Ukuran word biasanya sama dengan jumlah bit yang digunakan untuk representasi bilangan dan panjang instruksi.
• Addressable units, pada sejumlah sistem, adressable units adalah word. Namun terdapat sistem dengan pengalamatan pada tingkatan byte. Pada semua kasus hubungan antara panjang A suatu alamat dan jumlah N adressable unit adalah 2A =N.
• Unit of tranfer, adalah jumlah bit yang dibaca atau dituliskan ke dalam memori pada suatu saat. Pada memori eksternal, tranfer data biasanya lebih besar dari suatu word, yang disebut dengan block.

c. Metode Akses
Terdapat empat jenis pengaksesan satuan data, yaitu sebagai berikut.:
• Sequential access
Memori diorganisasikan menjadi unit-unit data, yang disebut record. Aksesnya dibuat dalam bentuk urutan linier yang spesifik. Informasi pengalamatan dipakai untuk memisahkan record-record dan untuk membantu proses pencarian. Mekanisme baca/tulis digunakan secara bersama (shared read/write mechanism), dengan cara berjalan menuju lokasi yang diinginkan untuk mengeluarkan record. Waktu access record sangat bervariasi. Contoh sequential access adalah akses pada pita magnetik.
• Direct access
Seperti sequential access, direct access juga menggunaka shared read/write mechanism, tetapi setiap blok dan record memiliki alamat yang unik berdasarkan lokasi fisik. Aksesnya dilakukan secara langsung terhadap kisaran umum (general vicinity) untuk mencapai lokasi akhir. Waktu aksesnya pun bervariasi. Contoh direct access adalah akses pada disk.
• Random access
Setiap lokasi dapat dipilih secara random dan diakses serta dialamati secara langsung. Waktu untuk mengakses lokasi tertentu tidak tergantung pada urutan akses sebelumnya dan bersifat konstan. Contoh random access adalah sistem memori utama.
• Associative access
Setiap word dapat dicari berdasarkan pada isinya dan bukan berdasarkan alamatnya. Seperti pada RAM, setiap lokasi memiliki mekanisme pengalamatannya sendiri. Waktu pencariannya pun tidak bergantung secara konstan terhadap lokasi atau pola access sebelumnya. Contoh associative access adalah memori cache.
a. Kinerja
Ada tiga buah parameter untuk kinerja sistem memori, yaitu :
• Access time (Waktu Akses)
Bagi RAM, waktu akses adalah waktu yang dibutuhkan untuk melakukan operasi baca atau tulis. Sedangkan bagi non RAM, waktu akses adalah waktu yang dibutuhkan untuk melakukan mekanisme baca tulis pada lokasi tertentu
• Cycle time (Waktu Siklus)
Waktu siklus adalah waktu akses ditambah dengan waktu transien hingga sinyal hilang dari saluran sinyal atau untuk menghasilkan kembali data bila data ini dibaca secara destruktif.
• Transfer rate (Laju Pemindahan)
Transfer rate adalah kecepatan pemindahan data ke unit memori atau ditransfer dari unit memori. Bagi RAM, transfer rate sama dengan 1/(waktu siklus). Sedangkan, bagi non-RAM, berlaku persamaan sbb.:

TN = Waktu rata-rata untuk membaca / menulis sejumlah N bit.
TA = Waktu akses rata-rata
N = Jumlah bit
R = Kecepatan transfer, dalam bit per detik (bps)
a. Tipe Fisik
Ada dua tipe fisik memori, yaitu :
• Memori semikonduktor
Memori ini memakai teknologi LSI atau VLSI (very large scale integration). Memori ini banyak digunakan untuk memori internal misalnya RAM.
• Memori permukaan magnetik
Memori ini banyak digunakan untuk memori eksternal yaitu untuk disk atau pita magnetik.
b. Karakteristik Fisik
Ada dua kriteria yang mencerminkan karakteristik fisik memori, yaitu:
• Volatile dan Non-volatile
Pada memori volatile, informasi akan rusak secara alami atau hilang bila daya listriknya dimatikan. Selain itu, pada memori non-volatile, sekali informasi direkam akan tetap berada di sana tanpa mengalami kerusakan sebelum dilakukan perubahan. Pada memori ini daya listrik tidak diperlukan untuk mempertahankan informasi tersebut. Memori permukaan magnetik adalah non volatile. Memori semikonduktor dapat berupa volatile atau non volatile.
• Erasable dan Non-erasable
Erasable artinya isi memori dapat dihapus dan diganti dengan informasi lain. Memori semikonduktor yang tidak terhapuskan dan non volatile adalah ROM.
1. Hirarki Memori
Tiga pertanyaan dalam rancangan memori, yaitu : Berapa banyak? Hal ini menyangkut kaspasitas. Berapa cepat? Hal ini menyangkut waktu akses, dan berapa mahal yang menyangkut harga? Setiap spektrum teknologi mempunyai hubungan sbb:
• Semakin kecil waktu access, semakin besar harga per bit.
• Semakin besar kapasitas, semakin kecil harga per bit.
• Semakin besar kapasitas, semakin besar waktu access.
Untuk mendapatkan kinerja terbaik, memori harus mampu mengikuti CPU. Artinya apabila CPU sedang mengeksekusi instruksi, kita tidak perlu menghentikan CPU untuk menunggu datangnya instruksi atau operand. Sedangkan untuk mendapatkan kinerja terbaik, memori menjadi mahal, berkasitas relatif rendah, dan waktu access yang cepat. Untuk memperoleh kinerja yang optimal, perlu kombinasi teknologi komponen memori. Dari kombinasi ini dapat disusun hirarki memori sebagai berikut:
Semakin menurun hirarki, maka hal-hal di bawah ini akan terjadi:
a) Penurunan harga per bit
b) Peningkatan kapasitas
c) Peningkatan waktu akses
d) Penurunan frekuensi akses memori oleh CPU.
Kunci keberhasilan hirarki ini pada penurunan frekuensi aksesnya. Semakin lambat memori maka keperluan CPU untuk mengaksesnya semakin sedikit. Secara keseluruhan sistem komputer akan tetap cepat namun kebutuhan kapasitas memori besar terpenuhi.